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Non-Markovian stochastic Liouville equation and its Markovian representation
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The non-Markovian variant of the stochastic Liouville equation~SLE! is studied within the continuous time
random walk approach~CTRWA!. The CTRWA-based non-Markovian SLE is shown to be equivalently rep-
resented by the corresponding conventional Markovian SLE. This Markovian representation provides a rigor-
ous method for deriving the non-Markovian SLE and allows for a physically clear interpretation of the specific
features of this SLE. It also enables one to develop convenient non-Markovian models useful for applications,
some of which are discussed in detail. Special attention is given to the discussion of anomalous long-tailed
CTRW processes and non-Markovian SLE. The obtained results are applied to the analysis of the effect of rate
fluctuations on chemical reaction kinetics. It is shown, in particular, that the anomalous fluctuations not only
influence the reaction rate but also change the reaction kinetics itself.
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I. INTRODUCTION

The modern theory of relaxation in dynamical systems
based on a number of well known approaches. One of
most widely applied is the short correlation time approxim
tion leading to the Bloch equation@1# or its classical analogs
This approach is very well known in the relaxation theo
~see, for example, Ref.@2#!. It allows for a rigorous deriva-
tion of Bloch-type equations, which are of special impo
tance for theoretical studies in magnetic resonance@3#, optics
@2#, etc.

An essential generalization of the theory beyond the sh
correlation time approximation~to describe the effect of fi-
nite correlation times! can be attained with the so called st
chastic Liouville equation~SLE! which allows for a descrip-
tion of relaxation under the assumption of the Markovi
nature of fluctuations@4#. The approaches based on the S
appeared to be very powerful and useful in the analysis
large variety of relaxation phenomena@2,3#. It is worth not-
ing, however, that the Markovian approximation implies ne
ligibly weak memory effects in the stochastic proces
which control fluctuations. In reality, however, this assum
tion is often not fulfilled, for example, in highly disordere
glassy materials@5#.

In this work we discuss the non-Markovian variant of t
SLE, which takes into account the memory effects. Th
effects are usually analyzed by two approaches: the gen
ized Langevin equation@2,6# and the continuous time ran
dom walk approach~CTRWA! @7–9#. In our consideration,
we will apply the second one, CTRWA, based on the conc
of independent renewals@10# governing sudden stochast
changes in the system~migration jumps, dephasing in dy
namic systems, etc.!, which are characterized by the pro
ability distribution function~PDF! of waiting time of renew-
als @7–9#.

The non-Markovian generalizations of the SLE have
been discussed in detail so far. Some recent studies d
with this type of the SLE, but considered only its simp
two-state variant@11#. In our work, we analyze the gener
multistate non-Markovian SLE. The detailed analysis
made with the use of the equivalent Markovian represe
1063-651X/2003/67~6!/061107~11!/$20.00 67 0611
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tion of the non-Markovian SLE, which allows one to deriv
an analytical expression for the PDF~or density matrix! of
the relaxing system, as well as propose simple approac
for describing relaxation in the multistate systems. Here,
will concentrate on three of them: the two-state model,
Fokker-Plank approximation, and the sudden relaxat
model. We will thoroughly discuss possible applications
the obtained results and proposed models.

It is also shown that the Markovian representation p
vides a deep insight into the specific features of the CTRW
based SLE and offers the possibilities to analyze them
terms of those for the conventional Markovian SLE. With
this representation, some analytical expressions for wai
time PDFs via kinetic functions of the equivalent Markovia
process are derived, which provide a simple interpretation
stationary and nonstationary variants of the SLE and cla
the relation between these two variants.

To illustrate the obtained general results, we study
manifestation of anomalous long-tailed fluctuations of t
reaction rate on the kinetics of the first-order chemical re
tions. This process is analyzed within all three abov
mentioned models. The long-tailed fluctuations, the m
representative example of non-Markovian processes w
anomalously long memory@12,13#, are shown to strongly
affect the reaction kinetics. Unlike Markovian fluctuation
for which the kinetics is always exponential at large tim
and the effect of fluctuations reduces mainly to the chang
rate, non-Markovian fluctuations influence the kinetics itse

II. FORMULATION OF THE PROBLEM

We consider the kinetics of relaxation in a dynamical s
tem caused by fluctuating interactions. The evolution of
system is assumed to be governed by the~classical or quan-
tum! fluctuating operatorL(t). In general, the relaxation ki
netics in this system is described by the PDFr(t) ~or density
matrix for quantum systems! that satisfies the linear equatio

ṙ52L~ t !r. ~2.1!

In this work, we concentrate on classical processes in wh
L(t) is a classical fluctuating operator. In general, howev
©2003 The American Physical Society07-1
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A. I. SHUSHIN PHYSICAL REVIEW E 67, 061107 ~2003!
the expression for the operatorL(t) can be written both for
classical and quantum systems, for whichLr5$H,r% and
Lr5 i\@H,r#, respectively, where$H,r% are the Poisson
brackets corresponding to the classical HamiltonianH, and
@H,r#5Hr2rH is the commutator with the quantum
HamiltonianH.

Before proceeding to the analysis of system evolution,
need to specify the mechanism ofL̂(t) fluctuations. In what
follows, we assume that the fluctuations result from stoch
tic jumps between the statesun&[uxn& in the ~discrete or
continuum! space$xn% with different L5Ln which are con-
veniently combined into the matrix

L̂5(
n

uxn&Ln^xnu. ~2.2!

Hereafter, we will use the ‘‘bra-ket’’ notation for the states
the $x% space that appears to be fairly suitable for treat
relaxation phenomena determined by non–self-adjoint e
lution operators@14#.

The general solution of Eq.~2.1! can be written in terms
of the T-ordered evolution operator,

r~ t !5TFexpS 2E
0

t

dtL̂~t! D Gr i . ~2.3!

The macroscopic evolution of the system is essentially de
mined by the average evolution operator

Ŝ~ t !5K TFexpS 2E
0

t

dtL̂~t! D G L
x

, ~2.4!

in which averaging is made over the fluctuations ofL(t),
i.e., over the realizations of the stochastic process in the$xn%
space. Both for Markovian and non-Markovian fluctuatio
Ŝ(t) is expressed in terms of the so called conditional e
lution operatorĜ(x,tuxi ,t i) averaged over the initial distri
bution P0(xi) of the system in the$x% space:

Ŝ~ t !5E E dxdxi Ĝ~x,tuxi ,t i !P0~xi !. ~2.5!

In general, the evaluation ofĜ(x,tuxi ,t i) is a very complex
problem. In some approximations, however, it is consid
ably simplified.

The important example of these approximations is
Markovian approach in which the fluctuations ofL̂(t) are
assumed to result from Markovian stochastic jumps betw
the statesuxn& in the $xn% space. These jumps are known
be completely characterized by the PDFP(x,tuxi ,t i) that
satisfies the master equation@2#

Ṗ52L̂P, with P~x,t i uxi ,t i !5dxxi
, ~2.6!

where L̂ is the linear operator which, in principle, can b
time dependent, i.e., the process in the$x% space can be non
stationary. In our discussion, however, we restrict oursel
to stationary processes only. The principal simplification
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the problem results from the fact that in the Markovi
model ~2.6!, the evolution operatorĜ(x,tuxi ,t i) satisfies the
SLE:

Ġ̂52~ L̂1L̂!Ĝ with Ĝ~x,t i uxi ,t i !5dxxi
. ~2.7!

The main objective of this work, however, is to analyze t
systems with non-Markovian fluctuations ofL̂(t). Below, we
will show that in this case, the analysis can be done by tre
ing the fluctuations within the CTRWA resulting in the no
Markovian variant of the SLE.

III. NON-MARKOVIAN FLUCTUATIONS

One of the most popular methods of modeling the no
Markovian fluctuations is based on the CTRWA@7–9#. Here,
we discuss the CTRWA-based non-Markovian SLE in t
conventional probabilistic formulation and derive it rigo
ously within the equivalent Markovian approach.

A. CTRWA-based non-Markovian SLE

In the CTRWA, the non-Markovian features ofL̂(t) fluc-
tuations show themselves in the non-exponential PDF
waiting timeW(t) of stochastic changes ofL̂ resulting from
jumps between statesun&[uxn& in the space$xn%[$x%. De-
pending on physical situation, two types of CTRWA are o
ten considered: nonstationary~n! and stationary~s! @7#. They
differ in the waiting time PDFWf(t) of the statistics of the
very first change of the interaction. In then case, it equals the
PDFWn(t) of further changes:Wf(t)5Wn(t), while in thes
caseWf(t)5Ws(t)ÞWn(t). In the general multistate varian
of the CTRWA, the fluctuations are characterized by the m
trices Ŵn(t) and Ŵf(t), which satisfy the relationsWm j j

50 and*0
`dt(n8Wmnn8

(t)51 for m5n,s. In thes-CTRWA,

Ŵs(t) is closely related toŴn(t) @15#,

Wsnn8
~ t !5Wsnn8

~ t !5E
t

`

dtWnnn8
~t!/ t̄ n8 , ~3.1!

where t̄ n5*0
`dtt@(n8Wnn8n

(t)#.

The conventional CTRW process~i.e., L̂50) is described
by the conditional PDFsĜm(t) for m5n,s which satisfy
some integral equations@7–9#. The evolution of the system
with fluctuatingL̂(t), whose fluctuations are governed by th
CTRW process, appears to be described by an integral e
tion, as well, which can be called the non-Markovian SLE
has been derived in Ref.@11#, not quite rigorously using
probabilistic arguments in analogy with the Markovian ca
In the most general form, it is written as a system of tw
equations

R̂~ t !5Ŵm~ t !e2L̂t1E
0

t

dtŴn~t!e2L̂tR̂~ t2t!, ~3.2!
7-2
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Ĝm~ t !5 P̂m~ t !e2L̂t1E
0

t

dt P̂n~t!e2L̂tR̂~ t2t!, ~3.3!

in which R̂(t8) is the auxiliary matrix describing the state
the system after transition at timet and

Pmnn8
5dnn8E

t

`

dt(
n9

Wmn9n
~t! ~m5n,s! ~3.4!

are the~diagonal! matrices of probabilities of not observin
any fluctuations during timet. These equations can formall
be solved by the Laplace transformation defined asf̃ (e)
5*0

`dt f(t)exp(2et) for any functionf (t):

Ĝ̃~e!5 P̂̃m~V̂!1 P̂̃n~V̂ !@12Ŵ̃n~V̂ !#21Ŵ̃m~V̂!, ~3.5!

where

V̂5e1L̂ and Ŵ̃m~V̂!5E
0

`

dtŴm~ t !e2V̂t. ~3.6!

Notice, however, that, in general, the PDF matricesŴ̃m do
not commute withL̂ so that formula~3.5! is, in reality, a
fairly complex matrix expression.

A much deeper insight into the problem as well as si

plified and physically more clear expressions forĜ̃(e) can be
obtained with the Markovian representation of the CTRW
discussed below. In addition, this representation is, actu
the most rigorous method for the derivation of the no
Markovian SLE~3.2! and ~3.3!.

B. Markovian representation of the CTRWA

In accordance with the above formulation~Sec. II!, we
assume that the system can occupy the statesun&[uxn& ~of
the space$xn%[$x%), in which the evolution of the system i
determined by the operatorsLn @see Eq.~2.2!#. The kinetics
of (n→n8) transitions, however, is assumed to be control
by the Markovian process in another space$qj% governed by
the operatorL̂. The corresponding PDFs( j ,t) satisfies the
equation

ṡ52L̂s ~3.7!

describing evolution in$qj% space and equilibration if the
operatorL̂ has the equilibrium stateueq& (L̂ueq&50):

ueq&5(
j

pqj

e u j &, ^equ5(
j

^ j u~^equeg&51!, ~3.8!

wherepj
e are the equilibrium population probabilities.

The control of transitions betweenn states by theqj pro-
cess is assumed to proceed as follows. (n→n8) transitions
occur with the ratekn8n whenever the system visits the tra
sition stateut& in the $qj% space. The transitions are als
assumed to be accompanied by the change inu j & state, i.e.,
06110
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by the transitionut&→un& in the $qj% space. Notice that the
statesut& and un& are not only purej states but any linea
combinations of pure states.

A further general discussion impliesun&Þut&, but in the
discussion of some particular cases we will assumeun&
5ut& for simplicity. For the same reason, we also sugg
that the$qj% space is the same for alln states, as well as tha
the operatorL̂ and the statesut& and un& are independent o
the state in the$xn% space.

In this model $xn ^ qj% evolution of the system is de
scribed by the PDF matrixur̂& obeying the SLE

u ṙ̂&52~L̂1L̂1K̂d2K̂o!ur̂&, ~3.9!

in which L̂ is defined in Eq.~2.1!, and

K̂d5k̂d^ ut&^tu and K̂o5k̂o^ un&^tu ~3.10!

are the transition matrices in the$xn ^ qj%-space diagona
(K̂d) and nondiagonal (K̂o) in the $xn% subspace with

k̂d5(
n

un&knn^nu, k̂o5 (
n,n8Þn

un&knn8^n8u,

~3.11!

andknn5(n8(Þn)kn8n . Equation~3.9! should be solved with
the initial condition

ur̂& t505u i &(
n

un&^nu with u i &5(
j

pj
i u j &, ~3.12!

and ^equ i &5( j pqj

i 51.

The function of interest for our analysis is the Lapla

transformed PDFĜ̃ in the $xn% space:

Ĝ̃5^equ r̂̃&5(
j

r̂̃ j , where r̂̃ j5^ j u r̂̃&. ~3.13!

It is determined byu r̂̃(e)& satisfying the equation

u r̂̃&5Ĝu i &1ĜK̂ou r̂̃&, ~3.14!

where

Ĝ5~V̂1L̂1K̂d!21, with V̂5e1L̂. ~3.15!

Substitution of the particular solution of Eq.~3.14!,

r̂̃05^tur̃&5Ĝi1Ĝn~12k̂oĜn!21k̂oĜi , ~3.16!

in which

Ĝn5^tuĜun& and Ĝi5^tuĜu i &, ~3.17!

back into Eq.~3.14! yields the CTRWA-like expression@see
Eq. ~3.5!#

Ĝ̃5 P̂̃i~V̂ !1 P̂̃n~V̂ !@12Ŵ̃n~V̂ !#21Ŵ̃i~V̂ !, ~3.18!
7-3
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where

Ŵ̃m5k̂oĜm , P̂̃m5V̂21~12k̂dĜm! ~m5n,i !.
~3.19!

It is noteworthy that the matricesĜn and Ĝi can be ex-
pressed in terms of the Green’s function

ĝ5~V̂1L̂ !21 ~V̂5e1L̂ ! ~3.20!

by solving the equation

~V̂1L̂ !Ĝ512K̂dĜ: ~3.21!

Ĝm5~11ĝtk̂d!21ĝm , where ĝm5^tuĝum&, ~3.22!

with m5n,i , andĝt5^tuĝut&.
Formulas~3.19! offer the representation of the matrice

Ŵi(t) andŴn(t) in terms of the Green’s functionĜ for the
~controlling! process in the$qj% space:Ŵi(t) is the PDF
matrix for the times of the first visits of theut& state, while
Ŵn(t) is that for the times of revisits of this state.

The proposed Markovian representation enables us to
write the non-Markovian SLE~3.18! in a form very suitable
for our further applications

Ĝ̃5 P̂̃i1V̂21ĝ Ĝ̃0Ŵ̃i , where Ĝ̃05~ ĝ1L̂!21, ~3.23!

with

L̂5k̂d2k̂o and ĝ5k̂d~12Ŵ̃d!/Ŵ̃d . ~3.24!

In expression~3.24!, ĝ is represented in terms of the Lapla

transformŴ̃d of universal PDF matrixWd(t) ~diagonal in
the $xn% space!, which is directly related toP̂n(t): Ŵd(t)

52dP̂n(t)/dt. With the use of Eqs.~3.19! and ~3.22!, Ŵ̃d

5k̂dĜn can be written as

Ŵ̃d5
1

11F̂
, where F̂5

ĝt2ĝn

ĝn

1
1

k̂dĝn

, ~3.25!

so that

ĝ5k̂dF̂5k̂dĝn
21~ ĝt2ĝn!1ĝn

21 . ~3.26!

Notice thatŴ̃n is also expressed in terms of the matrixŴ̃d :

Ŵ̃n5(k̂o /k̂d)Ŵ̃d5(12L̂/k̂d)Ŵ̃d .

Formula ~3.23! shows the important property ofĜ̃: its
dependence on the transition matricesk̂d and k̂o mainly re-
duces to that on the matrixL̂. The only possible additiona
effect of k̂d can result from thek̂d dependence ofĝ which,
however, is negligible in the realistic limit of fairly sma
i k̂di and in the particular caseun&5ut& of special interest for
further discussion.

So far, we have assumed that the transition statesut& and
un& are the same for all states in the$xn% space. However, the
06110
e-

CTRW-type formulas~3.18!–~3.22! are also applicable for
n-dependent statesutn& and unn&. One should only change
the definition of matricesĜm andĝm(m5n,i ). Then depen-
dence of the operatorL̂ can also be taken into account~see
below!.

According to Eqs.~3.18! and~3.19!, the initial stateu i & in
the $qj% space manifests itself only in the waiting time PD
matrix Ŵi(t), so that, in particular, we have the following

~1! The n-CTRWA implies @7–9# u i &5un& and, therefore,

Ŵ̃i5Ŵ̃n and P̂̃i5 P̂̃n with

Ŵ̃n5~ k̂o /k̂d!Ŵ̃d , P̂̃n5V̂21~12Ŵ̃d!, ~3.27!

so that

Ĝ̃5 Ĝ̃n5~V̂21ĝ ! Ĝ̃05@V̂1L̂~V̂/ĝ !#21. ~3.28!

~2! The s-CTRWA is realized only if the operatorL̂ has
the equilibrium eigenstateue& and u i &5ue&:

Ŵ̃i5Ŵ̃s5~ k̂o /k̂d! P̂̃n / t̂, wheret̂5ĝnF̂/pt
e , ~3.29!

with pt
e5^tue&. In this expression,t̂ is the matrix of average

times ~diagonal in the$xn% space! which, in principle, de-
pends onV. Notice that, in general, formula~3.29! does not
agree with Eq.~3.1! defining the PDF matrixŴs(t). The
agreement is observed only in the caseun&5ut& when F̂

51/(k̂dĝt) and t̂51/(k̂dpt
e). Substitution of Eq.~3.29! into

Eq. ~3.18! yields

Ĝ̃5 Ĝ̃s5V̂21~12Ŵ̃e!1 Ĝ̃nŴ̃e , ~3.30!

whereŴ̃e5pt
e/(V̂ĝn).

IV. SIMPLE MODELS AND APPROXIMATIONS

A. Models for controlling process in the ˆqj‰ space

Here, we consider the two simple models of the contr
ling process in the$qj% space. These models enable one
describe a large variety of CTRW processes~including
anomalous! in terms of the proposed Markovian represen
tion and are of significance in further analysis.

For simplicity, we discuss only the caseun&5ut&, which is
sufficient for our applications. However, if necessary, t
general expressions forun&Þut& can straightforwardly be ob
tained with the use of formulas of Sec. III B.

Before discussing the models we would like to note th
the specific features of the time dependence of the PDF
trices Ŵm(t) and P̂m(t)(m5n,s,i ) are represented by
Ŵd(t)52dP̂n(t)/dt, which is diagonal in the basis ofn
states~i.e., commuting withL̂). Therefore for simplicity of
further notations, we will restrict ourselves to the case

L̂50, i.e., V̂5e. ~4.1!
7-4
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The corresponding formulas forL̂Þ0 can be obtained from
those derived below by replacinge with V̂.

1. Model of coupled kinetic states

In the model of coupled kinetic states, the controlli
Markovian process in the$qj% space is determined by

L̂5wt
1ut&^tu1(

j Þt
wj

2u j &^ j u2(
j Þt

~wj
2ut&^ j u1wj

1u j &^tu),

~4.2!

where wj
2 and wj

1 are the rates ofu j &→ut& and ut&→u j &
stochastic jumps, respectively, withwt

15( j Þtwj
1 . This

model is quite appropriate for describing structural chan
in some disordered systems of type of glasses in which
processes are controlled by conformational jumps with ra
widely distributed in their values.

In model~4.2!, one can easily findĝt , ĝn , andĝi for any
initial stateu i & and by this means get

Ŵ̃d5~11F̂!21 with F̂5@e1f~e!#/k̂d ~4.3!

andf5( j Þtwj
1/(e1wj

2).
This model gives some insight into the specific features

CTRW, in particular, anomalous CTRW@12,13# with long-
tailed waiting time PDFWd(t). Most conveniently they can
be analyzed in the case of continuum$qj% space. Suggesting
that j P@0,̀ ) and that the transition stateut& corresponds to
j t50, we obtain, for example, forwj

65wt
6 j a6(a2.1

1a1),

f̂~e!5eE d jwj
1/~e1wj

2!5jwt
1~e/wt

2!a, ~4.4!

wherea5(11a1)/a2,1 andj5p/@a2sin(pa)#.
Formula ~4.4! means that in the considered~anomalous!

case a,1, the PDF Ŵd(t) is of long-tailed behavior:
Ŵd(t);1/(wt

2t)11a.

2. Model of diffusionlike processes in thêqj‰ space

The controlling process in the$qj% space can also b
modeled by diffusionlike stochastic migration. This quite r
alistic model can be formulated in the discrete and c
tinuum forms for any dimensionalitynq of the $qj% space.

(a) Discrete$qj% space. In the simplest discrete model,

L̂5(
i 51

nq

wi(
j i

u j i&~2^ j i u2^ j i11u2^ j i21u!. ~4.5!

The Green’s functionĝ(e)5(e1L̂)21 for this L̂ and its
matrix elementsĝm for (m5xst,n,i ), defined in Eq.~3.22!,
is obtained analytically by the Fourier transformation inj i
~see, for example, Ref.@7#. Especially, simple expression
are found in the case un&5ut&: ĝn5ĝt5ĝ0(e)
5*0

`dt e2et) i 51
nq e22wi tI 0(2wit). This formula predicts an
06110
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anomalous behavior ofŴd(t) at t→`: for e→0, ĝ0(e)

;const1jqenq/221 and, therefore, for nq,2 Ŵd(t)
;1/t22nq/2.

(b) Continuum$qj% space. In the continuum case, th
diffusion model can be formulated in the form of the mod
of two kinetically coupled states@16#: the stateum& in which
the system undergoes migration in the continuum$qj% space
of dimensionalitynq<2 and the transition stateut& defined
above. In the case of spherically symmetric diffusion,

L̂5@DqL̂q1wmd~q2 l !#um&^mu1wtut&

3^tu2Sl
21wtd~q2 l !um&^tu2SlwmP̂ q

l ut&^mu, ~4.6!

where Sl5Snq
l nq21 is the surface area of the sphere wi

radius l of the transition state, in whichSnq
is the surface

area of the sphere of unit radius,L̂q52(d2/dq22Vnq
/q2)

with Vnq
5( 1

2 nq21)22 1
4 is the radial part of the operato

describing diffusion in the$qj% space with the diffusion co-
efficient Dq , and P̂ q

l is the projection operator in the$qj%
space defined by the relationP̂ q

l r(q)5r( l ) for any function
r(q).

Within model~4.6!, the PDFŴd(t) can be obtained in an
analytical form@16#. In particular, forun&5ut&,

Ŵ̃d5~11F̂!21 with F̂~e!5@e1fq~e!#/k̂d , ~4.7!

where the dependence

fq~e!5Dq~wt /wm!^ l u~e/Dq2L̂q!21u l &21 ~4.8!

is determined by the Green’s function^ l u(e/D2L̂q)21u l &,
which should be obtained for the reflective boundary con
tion at x5 l @16#: dr(q) /dquq5 l50.

Noteworthy is that formula~4.7! is similar to that ob-
tained in model~4.2! @see Eq.~4.3!#, as expected. The only
difference is in the definition off̂(e). It is also important to
note that the discussed model, which assumes free diffu
in infinite space, leads to the anomalous variant of
CTRWA: at smalle, we get f(e);ea @17#, where a51
2nq/2 for nq,2, and hence at long timesŴd(t);1/t11a, in
agreement with the prediction of the discrete model. At
termediate times, however,Ŵd(t) exponentially depends on
t: Ŵd(t);exp(2k̂dt) @16#.

3. The Mittag-Leffler approximation for Wd„t…

The complexity of the problems under study often do
not permit a detailed analysis of the physical nature of
controlling process~in the $qj% space!. In these cases, it is
reasonable to apply semiempirical approximations
Ŵd(t).

In particular, anomalous processes are conveniently a
lyzed by approximatingWd(t) with the Mittag-Leffler func-
tion. In the simplest variant of this approximation,
7-5
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Ŵ̃d5~11F̂!21 with F̂~e!5~w/k̂d!~e/w!a, ~4.9!

where 0,a<1 andw is the rate parameter that determin
the population relaxation, so that

Ŵd~ t !52 Ṗ̂n~ t !52Ėa@2~ k̂d /w!~wt!a#. ~4.10!

Here,

Ea~2x!5
1

2p i E2 i`

i`

dz
ez

z1xz12a
~4.11!

is the Mittag-Leffler function@18#. For 0,a,1, it is a
monotonically decreasing function ofx with Ea(2x)'1
2x/G(a11) for uxu!1 and Ea(x→2`)'1/x. The ap-
proximation Eqs.~4.9!–~4.11!, allows one to analyze the ef
fect of anomalous long-tailedŴd(t)(;1/t11a) predicted by
the physically sensible models discussed above.

Notice that the dependenceF̂;1/k̂d suggested in formula
~4.9! is very important. It reproduces a similar behavior p
dicted by the above-discussed realistic models for the c
trolling process~in the $qj% space! in the considered cas
un&5ut&. The behaviorF̂;1/k̂d also ensures the indepen
dence ofĝ5k̂dF̂ from k̂d , which is proved to be valid for
un&5ut& ~see Sec. III B!.

B. Models for transition matrix L̂ in the ˆxn‰ space

The general expressions~3.18!–~3.23! for arbitrary tran-
sition matricesk̂n andk̂o are fairly complex because of cum
bersome matrix operations. To get a deeper insight into
effects under study, in what follows we will use simplifie
models of transitions in the$xn% space taking into accoun
that in the considered caseun&5ut&, the problem reduces to
the analysis of different models forL̂.

(a) Two-state model. In the two-state model@11#, the op-
eratorL̂ is a (232) matrix with elements

L1152L215k1 and L2252L125k2 . ~4.12!

In this model, the matrixĜ @see Eq.~3.5!# is obtained ana-
lytically and is somewhat different for stationarys and non-
stationaryn processes:

Ĝ̃m j j
5 P̂̃ f j

1 P̂̃nj
D̂̃ j

21Ŵ̃n32 j
Ŵ̃m j

~ j 51,2!, ~4.13!

Ĝ̃m i j
5 P̂̃ni

D̂̃ i
21Ŵ̃m j

~ iÞ j ; i , j 51,2!, ~4.14!

wherem5n,s and D̂ j512Ŵ̃n32 j
Ŵ̃nj

.
Noteworthy is that model~4.12! is equivalent to the two-

state variant of the strong relaxation model~see below!.
(b) Fokker-Planck continuum model. In the case of con-

tinuum $xn% space, we can use the simplest model based
the Fokker-Planck approximation forL:

L̂52Dx“x~“x1“xu!, ~4.15!
06110
-
n-

e

n

which treats the fluctuation process as diffusion with the
efficient Dx in some effective potentialu(x) in $xn% space.

In model ~4.15!, the main problem reduces to obtainin

the Green’s functionĜ̃05(ĝ1L̂)21 @Eq. ~3.23!#. In general,
this problem is fairly complex even for relatively simp
Fokker-Planck–type operatorsL. However, in some cases

which are interesting for applications,Ĝ̃0 can be found ana-
lytically. Below, we will discuss some examples of analy
cally solvable models.

(c) Strong relaxation model. An important generalization
of the analysis to the continuum case can be made within
strong relaxation model which assumes sudden equilibra
of the system$xn% space and enables one to consider b
discrete and continuum cases fairly easily. In general, in r
resentation~3.23! of the non-Markovian SLE, this mode
corresponds to

L̂5ĝ0~12 P̂e!, where P̂e5uex&^exu. ~4.16!

The operatorP̂e determines the projection on the equilibriu
stateuex& in the $xn% space:

uex&5(
n

pxn

e un&, ^exu5(
n

^nu, ~4.17!

in which pxn

e is the probability of population of the stateun&
~so that^exuex&51).

A great advantage of the strong relaxation model is in t
this model allows for the representation of the Green’ s fu
tion Ĝ0 @Eq. ~3.23!# in the analytical form

Ĝ̃05
1

ĝ1L̂ 5S 11Ŵ̃g

P̂e

12^W̃g&
D ĝ0

21Ŵ̃g . ~4.18!

Here ^W̃g&5^exuŴ̃guex& and

Ŵ̃g5~11ĝg!21 with ĝg5ĝ/ĝ0 . ~4.19!

Recall that in the case of two states, the strong relaxa
model reduces to the two-state model discussed above.

V. APPLICATION TO THE ANALYSIS OF GATING

A. General remarks

To illustrate the proposed models and general results,
will apply them to the analysis of the well known problem
manifestation of reaction rate fluctuations in the kinetics
some biochemical reactions. Strictly speaking, the proc
implied in this example, is not dynamical; however, fro
mathematical point of view the corresponding proble
proves to be very similar to that analyzed above~see below!.

The effect of rate fluctuations on reaction kinetics, call
gating, is intensively studied for many years~see, for ex-
ample, Ref.@19#, and references therein!. A number of dif-
ferent models for gating have been proposed@19#, which,
however, are based on the conventional assumption of fa
fast decay of the rate fluctuations. In this case, the kinetic
7-6
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NON-MARKOVIAN STOCHASTIC LIOUVILLE EQUATION . . . PHYSICAL REVIEW E67, 061107 ~2003!
exponential at long times. As for the manifestations of p
sible anomalous specific features of rate fluctuations, t
have not been analyzed so far, to the best of our knowle
though the effect of such properties on some biochem
reactions~which shows itself in strongly nonexponential r
action kinetics! is well established@13,19#.

This anomalous nonexponential reaction kinetics is
lieved to result from the complexity of the structure a
dynamical properties of large biomolecules@13#. The most
popular and successful models of biomolecules ass
structural analogy of the molecules with glasses. Wit
these assumptions the above-proposed two Markovian m
els for the controlling process~the models of kinetically
coupled states and diffusionlike process! look quite reason-
able. They allow us to interpret the reasons for the ano
lous behavior of waiting time PDFs and relate the parame
describing this behavior to the kinetic parameters for
ementary processes in biomolecules.

In this work, we will study the effect of anomalous ra
fluctuations using the simplest first-order reaction with
fluctuating ratek(t) as an example. The kinetics of this r
action, i.e., the numberCg(t) of survived particles, is given
by the expression similar to Eq.~2.4!:

Cg~ t !5K expF2E
0

t

dtk~t!G L
k

5^exuĈ~ t !u i n&, ~5.1!

where the bracketŝ•••&k mean averaging over fluctuation
of the ratek, and u i n&5(npn

i un& is the initial state vector in
the $x% space. Within the CTRWA and the Markovian repr
sentation, the problem reduces to the analysis of solutio
the non-Markovian SLEs~3.23! for the Laplace transform o
the PDF matrixĈ(t):

Ĉ̃5 P̂̃i1V̂21ĝĈ0Ŵ̃i , with Ĉ̃05~ ĝ1L̂!21, ~5.2!

in which V̂ is expressed in terms of the matrix of reacti
ratesk̂ as follows:

V̂5e1 k̂, where k̂5(
n

un&kn^nu. ~5.3!

In our work, we will mainly concentrate on the discussion
anomalous long-tailed fluctuations ofk(t) for which Ŵd(t)
;1/t11a, with a,1, and therefore we will restrict ourselve
to the nonstationary variant of the non-Markovian SLE on

Recall that this variant corresponds toP̂̃i5 P̂̃n and Ŵ̃i

5Ŵ̃n . At intermediate times, however, the behaviorŴd(t)
can be close to exponential, as expected from the model
the controlling process proposed above@see, for example
Eq. ~4.7!#.

B. Two-state model

A relatively simple expression forĈ(t) can be obtained in
the two-state model discussed in Sec. IV~the states are de
noted asu1& and u2&). Here, we discuss the most interesti
case in which one of the states, sayu2&, is nonreactive, i.e.,
06110
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k250 andV̂5e1ku1&^1u. In fact, the effect of anomalou
(1↔2) transitions onĈ(t) has already been analyzed in Re
@11#. A large variety of different types of kineticsCg(t) have
been found, depending on the initial condition and the re
tion between parameters of the model, such as nonmonot
and strongly nonexponential behavior ofCg(t).

In accordance with the goal of our work to analyze t
manifestation of anomalous gating, we will discuss the p
dictions of the two-state model within the Mittag-Leffler a
proximation forŴd(t) defined by Eqs.~4.9!–~4.11!. In this
approximation, the general formulas~4.13! and ~4.14! result
in the following expression forC̃g(e) @11#:

C̃g5V1
21R11V2

21R2 , ~5.4!

where

Rn5Zn /~Z11Z2! with Zn5fn1pn
0f1f2 . ~5.5!

In the parametersZn ,

fn~e!5~w/kn!~Vn /w!a ~V15e1k,V25e!. ~5.6!

In the absence of reaction (k̂50), expressions~5.4!–~5.6!
describe the relaxation of the system to the equilibrium s

uex&5p1
eu1&1p2

eu2& with pn
e5tn /~t11t2!, ~5.7!

in which tn5kn
21 , for n51,2. The anomalous kinetics o

relaxation is represented as@11#

ur~ t !&5 P̂n~ t !ur0&5Ea@2~ k̂d /w!~wt!a#ur0&. ~5.8!

The reaction kineticsCg(t) for k̂Þ0 significantly depends
on the initial condition~i.e., p1

0 and p2
0), as well as on the

relation between the ratew andk.
(a) The case w@k. In the case of sufficiently large tran

sition rates for any initial stateu i &Þuex&, the first stage of the
process is the anomalous relaxation to the equilibrium s
uex& according to Eq.~5.8!. The long time stage~at t*1/k)
comprises the slow reactive decrease of population of
slightly perturbed equilibrium state. Evolution of the syste
at this stage is described byr̃n(e) at e&k!w. A simple
analysis shows that for these values ofe, r̃1'p1

e/(e1k) and

r̃2'p2
e/@e1(p1

ek/e)a#. This means that att*1/k, reaction
is also nonexponential and is approximately described b
linear combination of the exponential and the Mittag-Leffl
functions:

Cg~ t !'p1
ee2kt1p2

eEa@2~ k̄t !a#, ~5.9!

wherek̄5k(k2 /k1).
(b) The case w!k. In the opposite limit of large reaction

rate, the kineticsCg(t) is also described by an expression
the type of Eq.~5.9!, but with other kinetic parameters. Th
exponential termp1

0e2kt represents the first fast decay
initial population of state 1 at short timest;k21. At longer
times t;w21.k21, the kinetics is described by nearly irre
7-7
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A. I. SHUSHIN PHYSICAL REVIEW E 67, 061107 ~2003!
versible relaxation transitions (2→1) whose contribution to
Cg(t) can be written asp2

0Ea@2(k2 /w)(wt)a#. Combining
these two terms into the final expression, one gets

Cg~ t !'p1
0e2kt1p2

0Ea@2~k2 /w!~wt!a#. ~5.10!

Expressions~5.9! and~5.10! show that@except for the inter-
mediate relaxation stage~5.8!# in the presence of anomalou
gating, the reaction kineticsCg(t) is typically exponential at
short times @Cg(t);e2kt#, but is anomalous long-tailed
@Cg(t);1/t11a# at long times.

C. Fokker-Planck continuum model

A relatively simple analysis of the problem can also
made in some continuum models for which the space$xn%
[$x% is assumed to be a one-dimensional continuum.

In our analysis, we will use the simplest model for st
chastic fluctuations in the$x% space based on the Fokke
Planck approximation in whichL̂52Dx“x(“x1“xu). For
a general analysis of the kineticsCg(t), one does not need t
specify the explicit analytic form ofu(x)5U(x)/(kBT). We
will only assume thatu(x)[u(uxu) is the even function of
the shape of a potential well with the bottom atx5xb50
andu(x)→` as uxu→` @for example,u(x);x2].

Recall that, for the sake of simplicity, we restrict ou
selves to the discussion of the caseun&5ut& in which the
matrix ĝ5k̂dF̂ is independent ofk̂d . For definiteness, we
also assume that initially the system is prepared in the e
librium state in the$x% space, i.e.u i n&5uex&.

The kineticsCg(t) is essentially determined by the rea
tivity k(x). In the considered case of non-Markovian flu
tuations, which corresponds to the long-tailed PDFŴd(t)
;1/t11a ~with a,1), the problem becomes fairly comple
for x-dependent reactivity. Even in the parabolic mod
k(x);x2, analytically solvable for Markovian fluctuation
@20#, the kinetics cannot be found in the analytical form
the non-Markovian case. In what follows, we will consid
the physically reasonable and analytically solvable mod
which is often applied for the description of gating~see Ref.
@19#, and references therein!:

k~x!5k0u~ uxu2x0! with k0→`. ~5.11!

At the coordinates6x0 at the onset of fast reaction, th
potentialu(x) is assumed to be large enough:u(6x0)@1.

In accordance with the results of Sec. V, the problem
calculation of the PDFC(x,xi ut) reduces to obtaining the

Green’s functionĜ̃n5@V(x)1L̂V(x)/ĝ„V(x)…#21, where
V(x)5e1k(x). It is easily seen that for the stepwisek(x)

@Eq. ~5.11!#, one getsĜ̃n50 for x>x0 and

Ĝ̃n5@e1eL̂/ĝ~e!#21 for x<x0 , ~5.12!

where

L̂5L̂g52Dx“x~“x1“xug!, ~5.13!

in which the potential
06110
-

i-

l

l,

f

ug~x!5u~x!u~x02uxu!2u0u~ uxu2x0!, ~5.14!

with u0@1, is of the shape of the potential well with barrie
at x;6x0. This means that the problem under study redu
to that of escaping from the well of the potentialug(x) by
diffusion over the barriers.

In the considered limitu(x0)@1 for the assumed initia
stateu i n&5uex&, this kinetics can easily be obtained analy
cally @11#:

C̃g~e!5@e1wge/g~e!#21, ~5.15!

where

wg52DxF E
xP$b%

dxe2ug(x)E
x;x0

dxeug(x)G21

~5.16!

is the lowest eigenvalue of the operatorLg , which deter-
mines the rate of escaping from the wellug(x) @21#. In ex-
pression~5.16!, the first and second integrals are taken ov
the regions near the bottom$b% of the well (x;xb50) and
near the barrier atx;x0, respectively. Interestingly, formula

for C̃g(e) is very similar to that for the PDFP̂̃n(e)5@e
1e/F(e)#21. The only difference is in the additional coe
ficient wg /k̂d in Eq. ~5.15!. This means that the kinetic func
tion Cg(t) is close toPn(t).

In particular, in the Mittag-Leffler approximation~4.9! for
which g(e)5w(e/w)a for a,1,

Cg~ t !5Ea@2~wg /w!~wt!a#. ~5.17!

It is important to note that, according to this expressio
Cg(t) anomalously slowly decreases at long times:Cg(t)
;1/ta.

It is worth noting that in the presence of anomalous gat
the reaction kineticsCg(t) is expected to strongly depend o
the functional form ofk(x). This fact will become quite
clear if one takes into account that for sharply changingk(x)
@given by Eq.~5.11!#, Cg(t) is a slowly decreasing function
Cg(t);1/ta, while for constantk5k0 the kineticsCg(t) is
exponential:Cg(t);exp(2k0t). Unfortunately, it is difficult
to analyze the dependence ofCg(t) on k(x) within the
Fokker-Plank approximation. From this point of view, th
strong relaxation model proposed above proves to be v
helpful.

D. Strong relaxation model

The general results obtained in Sec. IV B within th
strong relaxation model allow us to derive an analytical e
pression for the reaction kineticsCg(t). Here, we will con-
sider the most interesting case of the continuum$x% space
and assume that the relaxation rateg0 is independent ofx.

In principle, some details of the reaction kinetics at ea
stage depend on the initial stateu i n& in the $x% space, how-
ever, for definiteness and simplicity, we will analyze only t
case of the equilibrium initial stateu i n&5uex&, in which the
Laplace transform of the kinetics is given by
7-8
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C̃g5^exu~ ĝ/V̂! Ĝ̃0uex&5^P̃g&/~12^W̃g&!, ~5.18!

where, according to Eq.~4.19!,

Ŵ̃g5~11ĝg!21 and P̂̃g5@V̂~111/ĝg!#21, ~5.19!

with ĝg5ĝ/g0. In formula~5.18! @following Eq. ~4.18!#, we
introduce the notation̂B& for the averages of the operato

B̂5Ŵ̃g , P̂̃g :

^B&5^exuB̂uex&5Zu
21E dxB~x!e2u(x), ~5.20!

in which Zu5*dxe2u(x) is the partition function.
Expressions~5.18!–~5.20! reduce the problem of obtain

ing the kineticsCg(t) to that of evaluating the integrals i

^P̃g& and ^Ŵ̃g&.

1. Some exact limiting results

(a) Anomalous reaction kinetics for stepwise k(x)@Eq.
~5.11!#. For stepwise dependence of the reactivity onx:

k(x)5k0u(uxu2x0) with k0→`, the parameterŝP̂̃g& and

^Ŵ̃g& can easily be evaluated analytically. Substitution
these parameters into Eq.~5.18! yields

C̃g5~12pr !@e1pre/gg~e!#21, ~5.21!

where

pr52E
x0

`dx

Zu
e2u(x) with Zu5E

2`

`

dxe2u(x) ~5.22!

is the population of reactive states in the equilibrium sta
Within the Mittag-Leffler approximation~4.9!, in which
g(e)5w(e/w)a for a,1,

Cg~ t !5~12pr !Ea@2pr~g0 /w!~wt!a#. ~5.23!

For pr!1, this expression agrees with formula~5.17! ob-
tained above in the Fokker-Planck model with the ratewb
replaced by the average reaction rateprg0.

(b) Exponential reaction kinetics for k(x) independent
x. In the trivial case ofk(x)5k0 independent ofx, we get
P̃g5(e1k0)21(12W̃g) and, therefore,Cg(t)5exp(2k0t),
as expected.

2. Nonexponential reaction kinetics for k„x…Èzxzar

In the casek(x)5k0(uxu/xb)ar, the expression forCg(t)
cannot be obtained analytically, in general. However, so
interesting conclusions can be made by analyzing
asymptotic ~at t→`) behavior of Cg(t), which is deter-
mined byC̃g(e) at e→0. It is easixsly seen that in the lead
ing order in e→0, we can writeC̃g'^P̃g&/(12^W̃g&0),
with ^W̃g&05^W̃g&e50, i.e.,

Cg~ t ! '
t→`

~12^W̃g&0!21Pg~ t !^e2k(x)t&, ~5.24!
06110
f

.

f

e
e

where^e2k(x)t&5Zu
21*2`

` dxe2[u(x)1k(x)t] and

^e2k(x)t& '
t→` 1

Zu
E

2`

`

dxe2k(x)t;1/t1/ar. ~5.25!

Therefore, within the Mittag-Leffler approximation in whic
Pg(t)5Ea@2(g0 /w)(wt)a# one obtains

Cg~ t ! ;
t→`

1/ta11/ar. ~5.26!

It is worth noting that the potentialu(x) does not affect the
obtained asymptotic behavior ofCg(t). It is only determined
by the specific features of the dependencek(x) and anoma-
lous fluctuations of reactivity.

Formula~5.26! clearly demonstrates the important man
festation of the functional form of reactivityk(x) in the re-
action kinetics. In accordance with the above general con
sions, for slow dependencek(x) ~for small a r) the kinetic
function Cg(t) sharply decreases att→` approaching the
exponential function in the limita r→0, as predicted above

In particular, in the case of anomalous reactivity fluctu
tions ~i.e., for a,1) whose statistics cannot be described
any characteristic time, the reaction kinetics has neverthe
a finite average timetg if a r,1/(12a):

tg5E
0

`

dtCg~ t !5C̃g~e50!5
^P̃g&0

12^W̃g&0

, ~5.27!

where

^W̃g&05^W̃g&e505
1

Zu
E dx

e2u(x)

11gg~x!
, ~5.28!

^P̃g&05^P̃g&e505
1

Zu
E dx

e2u(x)

k~x!@11gg
21~x!#

, ~5.29!

with gg(x)5g(k(x))/g0. It is easily seen that the conditio
a r,1/(12a) ensures the convergence of the integral in E
~5.29! for ^P̃g&0 at x→0.

The expressions similar to Eq.~5.27! can be written for
any higher moments of the kineticsCg(t) in terms of deriva-
tives of C̃g(e). The existence conditions for these momen
are easily determined from Eq.~5.26!.

In general, the parameters^W̃g&0 and ^P̃g&0 and, there-
fore, tg can be calculated only numerically. In some simp
models, the representation in an analytical form is, in pr
ciple, also possible. For example, in the Mittag-Leffler a
proximation and foru(x): u(x)5u0u(uxu2xu), with u0

→`, both ^W̃g&0 and ^P̃g&0 are expressed in terms of th
incomplete EulerB functions@22# ~closely related to the hy-
pergeometric functions!. Unfortunately, even in this simpli-
fied model, a formula fortg is fairly cumbersome and incon
venient for the analysis.
7-9
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VI. DISCUSSION AND SUMMARY

In this work, we proposed the non-Markovian variant
the SLE, which describes the effect of non-Markovian flu
tuations of the parameters of dynamical systems on the
lution of these systems. In the case of Markovian fluct
tions, the SLE is well known and is successfully applied t
lot of problems of the relaxation theory. As for the no
Markovian case, the corresponding SLE has not been
cussed so far, to the best our knowledge.

Here, we have analyzed the effect of non-Markovian flu
tuations of parameters within the CTRWA. This approa
makes it possible to derive the integral equation for the P
~or density matrix! of the system that can be considered a
generalization of the conventional~Markovian! SLE to the
non-Markovian case.

It is shown that the CTRWA-based non-Markovian SL
can equivalently be represented in terms of some Markov
SLE. This representation provides a deep insight into
specific features of non-Markovian processes. It allows
the formulation and analysis of some realistic no
Markovian models and approximations useful for discuss
of normal and anomalous relaxation phenomena.

Below, we summarize the most important results of t
analysis.

~1! The Markovian representation gives the most rigoro
method for derivation of the CTRWA-based non-Markovi
SLE. It also provides a physically clear interpretation of t
important functions and parameters of the underly
CTRWA, and enables us to develop convenient ways of
numerical solution of the non-Markovian SLE reducing it
the Markovian one. This problem will be discussed in de
elsewhere@23#. Here, we restrict ourselves to a few remar
only. First, the Markovian representation allows for t
analysis of the physical meaning of renewals, applied in
CTRWA, in terms of revisits of the transition stateut& in the
$qj% space@see Eqs.~3.18!–~3.22!#. Second, this representa
tion shows that the stationary CTRWA exists only if the co
responding Markovian controlling process~in the$qj% space!
is stationary~i.e., has an equilibrium state! and the initial
state u i & is in equilibrium. As for the conventional nonsta
tionary CTRWA, it is realized foru i &5ut&. Third, the con-
trolling Markovian processes in the$qj% space, which do no
have the equilibrium states, represent anomalous CTR
and anomalous non-Markovian SLE corresponding to
long-tailed behavior of the PDFWd(t→`);1/t11a. Fourth,
the Markovian representation allows, in principle, for t
extension of the non-Markovian SLE to the case of quant
controlling processes, such as non-adiabatic charge tran
reactions@21#, etc.

~2! The proposed Markovian representation is especi
useful for the analysis of the multistate models in$xn% space.
With the use of this representation, the problem of evalua
the PDF matrix under studyĜ(t) is reduced to obtaining the

Green’s functionĜ̃05(ĝ1L̂)21 @see Eqs.~3.23! and~3.24!#,
in which the matrixĝ and operatorL̂ are expressed in term
of the parameters of the model. It is important to note tha
some cases~mainly considered in this work!, the matrixĝ is
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a universal function ofe, independent of the transitions rate

k̂d,o . In these cases, the dependence ofĜ(t) on the ratesk̂d,o

reduces to that onL̂5k̂d2k̂o only, so that the problems o

modelingĝ andL̂, which are determined by the processes
$qj% and $xn% spaces, respectively, can be analyzed se
rately ~see Sec. IV!.

~3! To illustrate high efficiency of the proposed metho
and models we applied them in the analysis of the effec
rate fluctuations on the kineticsCg(t) of the first-order
chemical reactions. This effect, usually called gating,
known to be very important in some biochemical reactio
@19#. In our work, we concentrated on the discussion of
manifestation of possible anomalous long-tailed fluctuatio
sometimes observed in biochemical processes. Some i
esting results are obtained with the proposed models, in
ticular, within the Mittag-Leffler approximation properly de
scribing anomalous behavior of waiting time PDFWd(t)
;1/t11a,(a,1).

In the simple two-state model~Sec. V B!, the reaction
kineticsCg(t) is found to be represented as a superposit
of exponential and long-tailed anomalous terms. Natura
the exponential term mainly contributes toCg(t) at relatively
short times, while the long time asymptotic behavior is d
termined by the anomalous term. The situation is especi
interesting in the limit of large rates of transitions betwe
states~larger than the reaction rate in the reactive state!, in
which the characteristic rate of the anomalous part of
reaction kinetics is significantly affected by the transiti
rates.

A more realistic analysis, however, should be based
continuum models of transitions in the$xn% space. In our
work, we analyzed the predictions of two of them: th
Fokker-Planck model and the sudden relaxation time mo
One of the most important predictions of both models co
prises in the strong dependence of the reaction kinetics
the mathematical form ofk(x). In our analysis, we assume
k(x);uxuar. The kinetics is found to change from strong
anomalous long-tailed to exponential with the increase ofa r
from a r!1 to a r@1, i.e., as the dependencek(x) becomes
sharper. The specific features of this change of the kine
are analyzed within the strong relaxation model. In partic
lar, it is shown that at largea r.1/(12a), the kinetics is
anomalous long tailed and cannot be described by any c
acteristic time. At smaller@a r,1/(12a)#, however, it is
characterized by the average reaction timetg defined by Eqs.
~5.27!–~5.29!.

This work mainly concerns with the analysis of manife
tations of anomalous long-tailed fluctuations~with a,1).
However, the obtained general results, in particular, formu
for reaction kinetics in the presence of gating~Sec. V!, are
valid for any type of stochastic fluctuations including co
ventional Poissonian. For example, for non-Poissonian fl
tuations withWd(t→`);1/t11a anda.1, the reaction ki-
neticsCg(t) still depends on the form ofk(x), but asa is
increased this dependence becomes less pronounced, d
pearing ata@1.

In conclusion, the proposed non-Markovian SLE and
Markovian representation enable one to analyze the eff
7-10
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of non-Markovian fluctuations of parameters on the kinet
relaxation in dynamical systems. To illustrate the results
our work, we discussed the effect non-Markovian anomal
fluctuations of the rate on the kinetics of gating, taking in
account formal mathematical equivalence of this problem
that for dynamical systems. However, there are a numbe
other important processes that can be studied with the us
the non-Markovian SLE: spin selective diffusion-assisted
actions of paramagnetic particles~radicals, triplet excitons
etc.! @24#, nonadiabatic reactions governed by stochastic m
-

nd

alk

06110
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tion along the reaction coordinates@21#, stochastic processe
observed by single-molecule spectroscopy@25#, etc. Analysis
of some of these processes is now in progress.
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