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Non-Markovian stochastic Liouville equation and its Markovian representation
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The non-Markovian variant of the stochastic Liouville equatiShE) is studied within the continuous time
random walk approactCTRWA). The CTRWA-based non-Markovian SLE is shown to be equivalently rep-
resented by the corresponding conventional Markovian SLE. This Markovian representation provides a rigor-
ous method for deriving the non-Markovian SLE and allows for a physically clear interpretation of the specific
features of this SLE. It also enables one to develop convenient non-Markovian models useful for applications,
some of which are discussed in detail. Special attention is given to the discussion of anomalous long-tailed
CTRW processes and non-Markovian SLE. The obtained results are applied to the analysis of the effect of rate
fluctuations on chemical reaction kinetics. It is shown, in particular, that the anomalous fluctuations not only
influence the reaction rate but also change the reaction kinetics itself.
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I. INTRODUCTION tion of the non-Markovian SLE, which allows one to derive
an analytical expression for the POBr density matrix of

The modern theory of relaxation in dynamical systems ighe relaxing system, as well as propose simple approaches
based on a number of well known approaches. One of th&or describing relaxation in the multistate systems. Here, we
most widely applied is the short correlation time approxima-Will concentrate on three of them: the two-state model, the
tion leading to the Bloch equatida] or its classical analogs. Fokker-Plank approximation, and the sudden relaxation
This approach is very well known in the relaxation theorymodel. We will thoroughly discuss possible applications of
(see, for example, Ref2]). It allows for a rigorous deriva- the obtained results and proposed models.
tion of Bloch-type equations, which are of special impor- It is also shown that the Markovian representation pro-
tance for theoretical studies in magnetic resondBteoptics  Vides a deep insight into the specific features of the CTRWA-
[2], etc. based SLE and offers the possibilities to analyze them in

An essential generalization of the theory beyond the shorierms of those for the conventional Markovian SLE. Within
correlation time approximatiofto describe the effect of fi- this representation, some analytical expressions for waiting
nite correlation timescan be attained with the so called sto- time PDFs via kinetic functions of the equivalent Markovian
chastic Liouville equatioiSLE) which allows for a descrip- Process are derived, which provide a simple interpretation of
tion of relaxation under the assumption of the MarkovianStationary and nonstationary variants of the SLE and clarify
nature of fluctuation§4]. The approaches based on the SLEthe relation between these two variants.
appeared to be very powerful and useful in the analysis of a T0 illustrate the obtained general results, we study the
large variety of relaxation phenomef3]. It is worth not- manifestation of anomalous long-tailed fluctuations of the
ing, however, that the Markovian approximation |mp||es neg_reaCtion rate on the kinetics of the first-order chemical reac-
ligibly weak memory effects in the stochastic processedions. This process is analyzed within all three above-
which control fluctuations. In reality, however, this assump-mentioned models. The long-tailed fluctuations, the most

tion is often not fulfilled, for example, in highly disordered representative example of non-Markovian processes with
glassy material§s]. anomalously long memory12,13, are shown to strongly

In this work we discuss the non-Markovian variant of the affect the reaction kinetics. Unlike Markovian ﬂUCtuationS,
SLE, which takes into account the memory effects. Thesdor which the kinetics is always exponential at large times
effects are usua”y analyzed by two approaches: the gener@nd the effect of fluctuations reduces mainly to the Change of
ized Langevin equati()'[lZ’G] and the continuous time ran- I’ate, non-Markovian fluctuations influence the kinetics itself.
dom walk approacHCTRWA) [7-9]. In our consideration,
we will apply the second one, CTRWA, based on the concept Il. FORMULATION OF THE PROBLEM
of independent renewalslO] governing sudden stochastic
changes in the systerfmigration jumps, dephasing in dy-
namic systems, efc.which are characterized by the prob-
ability distribution function(PDF) of waiting time of renew- tum) fluctuating operatot (t). In general, the relaxation ki-

als[7-9] netics in this system is described by the PRE) (or density

The non-Markovian generalizations of the SLE have notrﬂ ; b ; d
. ; ) . atrix for quantum systemshat satisfies the linear equation
been discussed in detail so far. Some recent studies dea q ystem q

with this type of the SLE, but considered only its simple =—1L 21

_ p (H)p. 2.0
two-state varianf11]. In our work, we analyze the general
multistate non-Markovian SLE. The detailed analysis isin this work, we concentrate on classical processes in which
made with the use of the equivalent Markovian representat (t) is a classical fluctuating operator. In general, however,

We consider the kinetics of relaxation in a dynamical sys-
tem caused by fluctuating interactions. The evolution of the
system is assumed to be governed by (itlassical or quan-
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the expression for the operatb(t) can be written both for the problem results from the fact that in the Markovian

classical and quantum systems, for which={H,p} and  model(2.6), the evolution operatog(x,t|x; ,t;) satisfies the

Lp=i%[H,p], respectively, wherdH,p} are the Poisson SLE:

brackets corresponding to the classical Hamiltorttgrand

[H,p]=Hp—pH is the commutator with the quantum R e a R

HamiltonianH. G=—(L+L)G with G(X,t|x;,t)=8x. (2.7
Before proceeding to the analysis of system evolution, we

need to specify the mechanism boft) fluctuations. In what  The main objective of this work, however, is to analyze the

follows, we assume that the fluctuations result from StOChaséystems with non-Markovian fluctuationsioft). Below, we
tic jumps between the stat¢s)=|x,) in the (discrete or vl show that in this case, the analysis can be done by treat-

continuum space{x, with differentL =L, which are con- g the fluctuations within the CTRWA resulting in the non-
veniently combined into the matrix Markovian variant of the SLE.

L:z,, LX) 22 III. NON-MARKOVIAN FLUCTUATIONS

Hereafter, we will use the “bra-ket” notation for the states in One of the most popular methods of modeling the non-

; : - kovian fluctuations is based on the CTR\WA-9]. Here
the {x} space that appears to be fairly suitable for treatlngwar . : g
relaxation phenomena determined by non-self-adjoint evo- e discuss the CTRWA-based non-Markovian SLE in the

lution operatorg14] conventional probabilistic formulation and derive it rigor-
The general solution of Eq2.1) can be written in terms ously within the equivalent Markovian approach.

A. CTRWA-based non-Markovian SLE
p()=T

é(t):<T

of the T-ordered evolution operator,
t ~
exp( - fodTL(T)) pi- (2.3 In the CTRWA, the non-Markovian features bft) fluc-
tuations show themselves in the non-exponential PDF of
The macroscopic evolution of the system is essentially detemwaiting timeW(t) of stochastic changes of resulting from
mined by the average evolution operator jumps between statés)=|x,) in the spacgx,}={x}. De-
pending on physical situation, two types of CTRWA are of-

ex% ~ jthL(T)) > (2.4 ten considered: nonstationafty) and stationarys) [7]. They
0 ' ' differ in the waiting time PDRN;(t) of the statistics of the

X very first change of the interaction. In thease, it equals the
in which averaging is made over the fluctuationsLgt), = PDFW;(t) of further changesw(t) =Wy(t), while in thes
i.e., over the realizations of the stochastic process i~ CaseW;(t) =W(t) #W,(t). In the general multistate variant
space. Both for Markovian and non-Markovian fluctuations Of the CTRWA, the fluctuations are characterized by the ma-
&(t) is expressed in terms of the so called conditional evoirices Wy(t) and Wy(t), which satisfy the relationsV,,
lution operatorG(x,t|x; ,t;) averaged over the initial distri- =0 andfqdt=, W, (t)=1 foru=n,s. InthesCTRWA,
bution Py(x;) of the system in thégx} space: W(t) is closely related ta,(t) [15],

é(t)=f fdxdx GX,tx; ) Po(X)). (2.5 W ()=W; ,(t)szdrwn (nlt,, (3.2
v v t 124

In general, the evaluation @(x,t|xi ,t)) is a very complex .
problem. In some approximations, however, it is considerwheretszf,"drr[EV,an,V(r)].

ably simplified. The conventional CTRW procesise., L =0) is described

The important example of these approximations is theby the conditional PDFS,(t) for w=n.s which satisfy
ILL L)

Markovian approach in which .the ﬂuctuatlpn_s bft) are some integral equatiorjf§—9]. The evolution of the system
assumed to result from Markovian stochastic jumps between

the stategx,) in the {x,} space. These jumps are known to with fluctuatingL (t), whose fluctuations are governed by the

; CTRW process, appears to be described by an integral equa-
be completely characterized by the PI¥X,t|x;,t;) that : . )
satisfies the master equatif] tion, as well, which can be called the non-Markovian SLE. It

has been derived in Refll], not quite rigorously using
P——7P, with POGE[X 1) = B 2.6 probabilistic arguments in a_na_llogylwnh the Markovian case.
i In the most general form, it is written as a system of two

. ] ) ) o equations
where L is the linear operator which, in principle, can be

time dependent, i.e., the process in {Respace can be non- .
stationary. In our discussion, however, we restrict ourselves RO=W, (t)e" F_t+J drW. (T)eff_ffz(t_ 7, (3.2
to stationary processes only. The principal simplification of a 0 " ’

061107-2
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~ ~ ~ t ~ r ~
gﬂ(t)=PM(t)e_'—‘+f drP(me ""R(t—17), (3.3

0

in which R(t') is the auxiliary matrix describing the state of
the system after transition at tinteand

P, ,=5W,f dr>, W, , () (u=n,s) (3.4
vy t y/l vy

are the(diagona) matrices of probabilities of not observing
any fluctuations during timé These equations can formally

be solved by the Laplace transformation definedfés)
= [5dtf(t)exp(—et) for any functionf(t):

=P () +P, ([ 1- W, ()] W, (Q), 35

nd W, (0 f dtw, (e . (3.6

Notice, however, that, in general, the PDF matriﬁé§ do

not commute withL so that formula(3.5) is, in reality, a
fairly complex matrix expression.
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by the transitiont)—|n) in the {q;} space. Notice that the
states|t) and|n) are not only purg states but any linear
combinations of pure states.

A further general discussion impliés)#|t), but in the
discussion of some particular cases we will assumge
=|t) for simplicity. For the same reason, we also suggest
that the{q;} space is the same for allstates, as well as that

the operatorA and the stateft) and|n) are independent of
the state in théx,} space.
In this model{x,®q;} evolution of the system is de-

scribed by the PDF matrilp) obeying the SLE

|p)=—(A+L+R4=Ro)[p), (3.9
in which L is defined in Eq(2.1), and
Kg=rq®|t){t] and Ky=xo®|n){t| (3.10

are the transition matrices in thix,®q;}-space diagonal
(K4) and nondiagonalK,) in the{x,} subspace with

’A(o: 2

vv' #Fv

’}dZE |V>KVV<V|’ |V>KVV’<V,|’
14

(3.11

andk,, =X,/ (x,)k,, . Equation(3.9) should be solved with

A much deeper insight into the problem as well as sim-the initial condition

plified and physically more clear expressmns@@e) can be

obtained with the Markovian representation of the CTRWA
discussed below. In addition, this representation is, actually,
the most rigorous method for the derivation of the non-

Markovian SLE(3.2) and(3.3).

B. Markovian representation of the CTRWA

In accordance with the above formulatig¢8ec. I), we
assume that the system can occupy the states|x,) (of
the spacéx,}={x}), in which the evolution of the system is
determined by the operatots, [see Eq{(2.2)]. The kinetics

[Pi—o=[D 2 [r)(v] with [)=2. pili). (312
and(eq|i>=Ejpiqj=1.

The function of interest for our analysis is the Laplace
transformed PDF; in the{x,} space:

of (v— ') transitions, however, is assumed to be controlledt is determined bjp(e)} satisfying the equation

by the Markovian process in another sp4qgg governed by
the operator\. The corresponding PDF(j,t) satisfies the
equation

o=—Ao

3.7

describing evolution in{q;} space and equilibration if the
operatorA has the equilibrium statee,) (A |eq)=0):

e =2 PGli). (ed=2 (il(edleg=1), (38

wherepje are the equilibrium population probabilities.
The control of transitions betweenstates by the; pro-
cess is assumed to proceed as follows—(v') transitions

occur with the ratec,,, whenever the system visits the tran-
sition state|t) in the {q;} space. The transitions are also

assumed to be accompanied by the changg)irstate, i.e.,

?=<eq|7>>=§ pj, where p;=(j[p).  (3.13
[p)=Gli)+GKolp), (314
where
=(Q+A+Ky L with O=e+L. (3.15
Substitution of the particular solution of E(B.14),
EO:<t|;>:éi+én(l_’}oén)_lf’;oél ) (3.16
in which
Gn=(t|G|n) and G;=(1|G|i), (3.17

back into Eq.(3.14) yields the CTRWA-like expressiofsee
Eqg. (3.5]

'Ul)

G=Pi(Q) +P,(V)[1-W, ()] WD), (3.18
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where

W,=koG,, P,=0 Y 1-ksG,) (,uzn,i).(3 "

It is noteworthy that the matrice§, and G; can be ex-
pressed in terms of the Green’s function

g=(Q+A)"t (Q=e+L) (3.20
by solving the equation
(Q+A)G=1-K,G: (3.20)

G,=(1+0kg) g,, whereg,=(t|glu), (3.22

with w=n,i, andg,=(t|g|t).

Formulas(3.19 offer the representation of the matrices

W, (t) andW,,(t) in terms of the Green’s functio& for the

(controlling process in the(q;} space:W(t) is the PDF
matrix for the times of the first visits of thi¢) state, while

W, (t) is that for the times of revisits of this state.

The proposed Markovian representation enables us to re-

write the non-Markovian SLE3.18) in a form very suitable
for our further applications

G=P+ 0" 19G,W,, where Go=(y+2)"%, (3.23
with

EZI’\(d_I’\(O and "7: ;(d(l_\‘?\/d)/\ANd. (324)

In expression(3.24), y is represented in terms of the Laplace

transform\7vd of universal PDF matrixVy(t) (diagonal in
the {x,} space, which is directly related tdP,(t): Wy(t)
= —dP,(t)/dt. With the use of Eqs(3.19 and (3.22, W,
= k4G, can be written as

—, where = 9,
1+® On

4= (3.29

Kd9n

so that

y=ra®=Kq9n (G~ 0n) +05 " (3.26
Notice that\7vn is also expressed in terms of the mal‘?iég:
W= (ko / kg) W= (1— L/ iq) Wy.

Formula (3.23 shows the important property (ﬁ: its
dependence on the transition matriegsand k, mainly re-
duces to that on the matrig. The only possible additional

effect of k4 can result from thecy dependence of which,
however, is negligible in the realistic limit of fairly small
| x4l and in the particular cage)=|t) of special interest for
further discussion.

So far, we have assumed that the transition stdpeand
[n) are the same for all states in tfe,} space. However, the

PHYSICAL REVIEW E 67, 061107 (2003

CTRW-type formulas(3.18—(3.22 are also applicable for
v-dependent statel$,) and |n,). One should only change

the definition of matrice§, andg,(x=n,i). Thev depen-
dence of the operatok can also be taken into accouisee
below).

According to Eqs(3.18 and(3.19), the initial statdi) in
the {q;} space manifests itself only in the waiting time PDF
matrix \7Vi(t), so that, in particular, we have the following.

(1) The n-CTRWA implies[7-9] |i)=|n) and, therefore,
W,=W, andP;=P, with

W= (ko/k)Wy, P,=0"Y1-W,), (3.27)

so that

G=0n=(0"9)Go=[0+L(0/)]™L. (328
(2) The sCTRWA is realized only if the operatok has
the equilibrium eigenstate) and|i)=|e):

W, =W,= (ko/kq)Pn/7, wherer=g,d/p¢, (3.29

with pé=(t|e). In this expressionr is the matrix of average
times (diagonal in the{x,} spacé which, in principle, de-
pends on(). Notice that, in general, formule.29 does not
agree with Eq.(3.1) defining the PDF matriX\?vs(t). The
agreement is observed only in the cds¢=|t) when ®
=1/(kq0;) and 7=1/(kp%). Substitution of Eq(3.29 into
Eq. (3.18 yields

G=0.=0"11-W,)+G,W,, (3.30

whereW,=p?/(Q9,).

IV. SIMPLE MODELS AND APPROXIMATIONS
A. Models for controlling process in the{q;} space

Here, we consider the two simple models of the control-
ling process in theq;} space. These models enable one to
describe a large variety of CTRW processg@scluding
anomalousin terms of the proposed Markovian representa-
tion and are of significance in further analysis.

For simplicity, we discuss only the cag® = |t), which is
sufficient for our applications. However, if necessary, the
general expressions fom) #|t) can straightforwardly be ob-
tained with the use of formulas of Sec. 1l B.

Before discussing the models we would like to note that
the specific features of the time dependence of the PDF ma-

trices W,(t) and P,(t)(u=n,s,i) are represented by
Wy(t)=—dP,(t)/dt, which is diagonal in the basis of
states(i.e., commuting withl). Therefore for simplicity of
further notations, we will restrict ourselves to the case

L=0, ie, O=e (4.
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The corresponding formulas far+0 can be obtained from anomalous behavior o\‘?Vd(t) at t—oo; for e—0, @0(6)

those derived below by replacingwith (). ~const- gqenq/Zﬂ and, therefore, for ng<2 Wy(t)
— 1/t2_nq/2.
(b) Continuum{q;} space In the continuum case, the
In the model of coupled kinetic states, the controlling diffusion model can be formulated in the form of the model
Markovian process in thég;} space is determined by of two kinetically coupled statd4 6]: the statgdm) in which
the system undergoes migration in the continyuy} space
- N o L s of dimensionalityn;<2 and the transition staf¢) defined
A=w |t><t|+i§;&:t w; |J><J|—2t (wj [ +wj )], above. In the case of spherically symmetric diffusion,

j#
4.2

1. Model of coupled kinetic states

A:[Dqu+Wm8(q_l)]|m><m|+wt|t>

wherew;  andw;" are the rates ofj)—|t) and [t)—|j) . )
stochastic jumps, respectively, witv, =3;.w;" . This X (=S wid(q=Dm)(t| = SwnP ot)(m[,  (4.6)
model is quite appropriate for describing structural changes L ]
in some disordered systems of type of glasses in which th@here §=S, [""~ is the surface area of the sphere with
processes are controlled by conformational jumps with rategadius| of the transition state, in whiclSnq is the surface
widely distributed in their values.

In model(4.2), one can easily find,, g,, andg; for any
initial state|i) and by this means get

1

area of the sphere of unit radiug,= —(d2/dq2—an/q2)

with anz(%nq—l)z—% is the radial part of the operator

describing diffusion in thdq;} space with the diffusion co-

W= (1+d) 1 with d=[e+d(e)]/rg (4.3 efficientDq, and?P  is the projection operator in thee;}
space defined by the relatidhyp(q) = p(1) for any function
and p=3 . W /(e+w,). p(Q).
This model gives some insight into the specific features of Within model(4.6), the PDFWd(t) can be obtained in an
CTRW, in particular, anomalous CTRW.2,13 with long-  analytical form[16]. In particular, for|n)=|t),
tailed waiting time PDRN4(t). Most conveniently they can
be analyzed in the case of continud)} space. Suggesting S _ EN—1 writh b/ o) — ~
thatj e[0,) and that the transition state) corresponds to Wq=(1+®) " with O(e)=[e+ ¢g(€) ]/ g, (4.7
jt=0, we obtain, for example, fow; =w; j**(a_>1

where the dependence
+ a+)1

. bq(€)=Dg(Wi/We)(I|(e/Dg—Ag) HI)™H (4.8
¢(e)=ef djw /(e+w;)=¢éw (e/w;)®, (4.9

is determined by the Green’s functic(m|(e/D—f\q)*l|I>,
wherea=(1+a,)/a_<1 andé= /[ a_sin(ra)]. which should be obtained for the reflective boundary condi-

Formula(4.4) means that in the consideréanomalous tior&lg:;(vjolrt[#ﬂ;sdfh(gt) ;grqu]qj‘l’;% < similar to that ob
case a<l, _theHIZDF Wy(t) is of long-tailed behavior: tained in mogel(4.2) [see Eq.(4.3)], as expected. The only
Wa(t)~ 1w 7. difference is in the definition of(e€). It is also important to
note that the discussed model, which assumes free diffusion
in infinite space, leads to the anomalous variant of the

The controlling process in thég;} space can also be CTRWA: at smalle, we get¢(e)~e® [17], wherea=1
modeled by diffusionlike stochastic migration. This quite re-_nq/2 for ng<2, and hence at long timal(t) ~ 1412, in

alistic model can be formulated in the discrete and conygreement with the prediction of the discrete model. At in-

tinuum forms for any dimensionality,, of the{q;} space. . . A .
(a) Discrete{q;} gpace In the sigg)lest diigrgtepmodel terpwedlate t|me§, howevew(t) exponentially depends on
! t: Wy(t) ~exp(— «4t) [16].

2. Model of diffusionlike processes in thgg;} space

g
]\:Zl Wi,E lio@Gil=Gi+1=Gi—1). (4.5 3. The Mittag-Leffler approximation for W(t)

. . The complexity of the problems under study often does
' o P oA ) not permit a detailed analysis of the physical nature of the
The Green's functiorg(e)=(e+A) " for this A and its  onirolling procesgin the {g;} space. In these cases, it is
matrix elementgy,, for (w=xstn,i), defined in Eq(3.22,  reasonable to apply semiempirical approximations for
is obtained analytically by the Fqurier t_ransformationj.jn \7Vd(t).
(see, for example, Ref7]. Especially, simple expressions ‘| particular, anomalous processes are conveniently ana-
are found in the case|n)=|t): g,=0;=0o(€) lyzed by approximatingVy(t) with the Mittag-Leffler func-
=f3°dte‘ftH?gle‘ZWitlo(Zwit). This formula predicts an tion. In the simplest variant of this approximation,
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Wy=(1+d)"! with d(e)=(W/kg)(elw)®, (4.9

where < <1 andw is the rate parameter that determines

the population relaxation, so that

Wq(t)=—Py(t)=—E [~ (ka/W)(WD*].  (4.10
Here,
— 1 1 i
Ea(—X)— ﬁjidem (41])

is the Mittag-Leffler function[18]. For 0<a<1, it is a
monotonically decreasing function of with E_ (—x)~1
—xIT(a+1) for |x|<1 and E (x— —»)~1/X. The ap-

PHYSICAL REVIEW E 67, 061107 (2003

which treats the fluctuation process as diffusion with the co-
efficient D, in some effective potential(x) in {x,} space.
In model (4.15, the main problem reduces to obtaining

the Green's functioo= (y+ £) ! [Eq. (3.23]. In general,
this problem is fairly complex even for relatively simple
Fokker-Planck—type operators. However, in some cases,

which are interesting for application§, can be found ana-
lytically. Below, we will discuss some examples of analyti-
cally solvable models.

(c) Strong relaxation modeAn important generalization
of the analysis to the continuum case can be made within the
strong relaxation model which assumes sudden equilibration
of the system{x,} space and enables one to consider both
discrete and continuum cases fairly easily. In general, in rep-
resentation(3.23 of the non-Markovian SLE, this model

proximation Eqs(4.9—(4.11), allows one to analyze the ef- corresponds to

fect of anomalous Iong-taileﬁ/d(t)(~1/t1+“) predicted by
the physically sensible models discussed above.

L=%0(1—P,), where P.=|e,)(e,|. (4.16

Notice that the dependende~ 1/x4 suggested in formula . . o .
(4.9) is very important. It reproduces a similar behavior pre-The operatoP, determines the projection on the equilibrium

dicted by the above-discussed realistic models for the corstatele,) in the{x,} space:
trolling process(in the {q;} space in the considered case

In)y=|t). The behaviord~ 1/k4 also ensures the indepen-
dence ofy=k4® from k4, which is proved to be valid for

|ex>=§V: p§V| V>’ (ex|:2V <V|, (4.17

[n)=|t) (see Sec. Il B.

B. Models for transition matrix £ in the {x,} space

The general expressiori8.18—(3.23 for arbitrary tran-

in which p$ is the probability of population of the stalte)
(so that(e,|e,)=1).

A great advantage of the strong relaxation model is in that
this model allows for the representation of the Green’ s func-

sition matricesc, andx, are fairly complex because of cum- tion Gy [Eq. (3.23] in the analytical form
bersome matrix operations. To get a deeper insight into the

effects under study, in what follows we will use simplified
models of transitions in théx,} space taking into account
that in the considered ca$e)=|t), the problem reduces to

the analysis of different models fat.
(a) Two-state modelin the two-state modéll1], the op-

eratorZ is a (2x2) matrix with elements

£11: - £21: K1 and ,C22: - ,612: Ko.

(4.12

In this model, the matrixj [see Eq.(3.5] is obtained ana-
lytically and is somewhat different for stationasyand non-
stationaryn processes:

< = s SR < .
Gﬂjj—PfJ+PnjAj W,. W (j=1,2),

N3—j " Hj

(4.13

O

wy=PaATW, ()5 =12, (414

whereu=n,s andA;= 1—\7‘\/n37]_\7vnj.
Noteworthy is that model4.12) is equivalent to the two-

state variant of the strong relaxation modete below

(b) Fokker-Planck continuum moddh the case of con-

G ! 1+W Pe S W (4.18
0 3/+z gl_<Wg> Yo g '
Here (W) =(e,|Wy|e,) and
Wy=(1+ 7y, with y4="/%,. (4.19

Recall that in the case of two states, the strong relaxation
model reduces to the two-state model discussed above.

V. APPLICATION TO THE ANALYSIS OF GATING
A. General remarks

To illustrate the proposed models and general results, we
will apply them to the analysis of the well known problem of
manifestation of reaction rate fluctuations in the kinetics of
some biochemical reactions. Strictly speaking, the process,
implied in this example, is not dynamical; however, from
mathematical point of view the corresponding problem
proves to be very similar to that analyzed ab¢see below.

The effect of rate fluctuations on reaction kinetics, called
gating, is intensively studied for many yeaisee, for ex-

tinuum{x,} space, we can use the simplest model based oample, Ref[19], and references thergimA number of dif-

the Fokker-Planck approximation fat:

L=-D,V(V,+V,u), (4.15

ferent models for gating have been propo$&€], which,
however, are based on the conventional assumption of fairly
fast decay of the rate fluctuations. In this case, the kinetics is
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exponential at long times. As for the manifestations of pos,=0 and{)=e+k|1)(1]. In fact, the effect of anomalous

sible anomalous specific features of rate fluctuations, the 1+2) transitions orf:(t) has already been analyzed in Ref.
have not been analyzed so far, to the best of our knowledg

though the effect of such properties on some biochemic L1]. Alarge variety of different types of kinetidSq(t) have

fions(which sh itself in st | ial een found, depending on the initial condition and the rela-
reactionswhich Snows Isell in srongly nonexponential 1e- i, petween parameters of the model, such as nonmonotonic

act_lrohn kinetics IIS well establlshe(g_l?,lq tion kinetics is b and strongly nonexponential behavior @f(t).
IS ahomalous nonexponential reaction KIN€UCS 1S be- , 5.corqance with the goal of our work to analyze the

Icljeved to lresult frtpm trf]el comg!exnyl of It[_?é] sfltﬁcture ?nd manifestation of anomalous gating, we will discuss the pre-
ynamical properties ot farge blomolecu - 1N€ MOSL yictions of the two-state model within the Mittag-Leffler ap-
popular and successful models of biomolecules assume =~ ~ . .
structural analogy of the molecules with glasses. WithinProximation forWq(t) defined by Eqgs(4.9—(4.11. In this

these assumptions the above-proposed two Markovian mo@_pproximatign, the gengral formula.13 and(4.14) result

els for the controlling proceséthe models of kinetically in the following expression foCg(e€) [11]:

coupled states and diffusionlike proce$sok quite reason- - . .,

able. They allow us to interpret the reasons for the anoma- Cy=Q; "R+ Q; "Ry, (5.4

lous behavior of waiting time PDFs and relate the parameters

describing this behavior to the kinetic parameters for el-VN€r€

ementary processes in biomolecules. _ . _ 0
In this work, we will study the effect of anomalous rate R,=Z,/(Z1+2;) with Z,=¢,+p,dadb2. (5.9

fluctuat@ons using the simplest first—order_ rea_lction wi_th the, the parameterg,,,

fluctuating ratek(t) as an example. The kinetics of this re-

action, i.e., the numbeC(t) of survived particles, is given b ()=(W/k,)(Q, /W) (Q;=e+k,Q,=¢). (5.6

by the expression similar to E¢R.4):

t
Cy(t)= < exr{ - Jodrk( 7)

where the bracketé - - ), mean averaging over fluctuations

of the ratek, and|i,)=3,p'|») is the initial state vector in in which 7,=«,*, for »=1,2. The anomalous kinetics of
the {x} space. Within the CTRWA and the Markovian repre- relaxation is represented Bkl]

sentation, the problem reduces to the analysis of solution of R R

the non-Markovian SLE3.23 for the Laplace transform of |p(t))=Pn(t)|po) =E[ — (kq/W)(Wt)*]|pg). (5.8

the PDF matrixC(t):

In the absence of reactiork€0), expressiong5.4)—(5.6)
> =(eJC(1)|i,), (5.1  describe the relaxation of the system to the equilibrium state
k

ley=p3l1)+p5|2) with pi=7,/(11+75), (5.7

The reaction kineticsCy(t) for k+#0 significantly depends
=P +0"158,W,, with &,=(y+2)~%, (5.2 on the initial condition(i.e., pj andp3), as well as on the
relation between the rate andk.
in which Q) is expressed in terms of the matrix of reaction (&) The case wk. In the case of sufficiently large tran-
ratesk as follows: sition rates for any initial statg)+ |e,), the first stage of the
process is the anomalous relaxation to the equilibrium state
A N - e,) according to Eq(5.8). The long time stagéatt=1/k
O=e+k, where k=2 [v)k(v]. (5.3 |coxr>nprises thge sIOV\(/q reactive decr?aase of p%pulation 2)f the
" slightly perturbed equilibrium state. Evolution of the system

In our work, we will mainly concentrate on the discussion ofat this stage is described by,(€) at esk<w. A simple
anomalous long-tailed fluctuations kft) for which \7Vd(t) analysis shows that for these value$0ﬁ1~p§/(e+ k) and

~ 1 e, with <1, and therefore we will restrict ourselves po~pS/[ e+ (pSki€)?]. This means that at=1/k, reaction

to the nonstationary variant of the non-Markovian SLE only.js also nonexponential and is approximately described by a
Recall that this variant corresponds ®=P, and W, linear combination of the exponential and the Mittag-Leffler

=\7Vn. At intermediate times, however, the beha\/ibg(t) functions:

can be close to exponential, as expected from the models for
the controlling process proposed abdeee, for example,

Eq. (4.7)].

Cy(t)~pSe K+ pSE,[—(kt)“], (5.9

wherek=Kk(ky/k1).
(b) The case w&k. In the opposite limit of large reaction
rate, the kineticCy(t) is also described by an expression of
Arelatively simple expression fdZ(t) can be obtained in the type of Eq(5.9), but with other kinetic parameters. The
the two-state model discussed in Sec.(tkle states are de- exponential termp?e‘kt represents the first fast decay of
noted ag1) and|2)). Here, we discuss the most interesting initial population of state 1 at short timeés-k~*. At longer
case in which one of the states, g8y, is nonreactive, i.e., timest~w~ >k, the kinetics is described by nearly irre-

B. Two-state model
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versible reIaxatic_Jn trans(i)tions (21) whose contribut_io_n to Ug(X) =U(X) B(Xo— |X]) —Ugf(|X| —Xo),  (5.14
Cy(t) can be written ap,E [ — (k2 /w)(wt)“]. Combining
these two terms into the final expression, one gets with up>1, is of the shape of the potential well with barriers

atx~ *=X,. This means that the problem under study reduces
Cy()~ple ¥+ pdE.[— (k2/W)(WH)*].  (5.10 1o that of escaping from the well of the potentig)(x) by
diffusion over the barriers.
Expressiong5.9) and(5.10 show thafexcept for the inter- In the considered limiti(x,)>1 for the assumed initial

mediate relaxation stag®.8)] in the presence of anomalous state|i,)=|e,), this kinetics can easily be obtained analyti-
gating, the reaction kinetigS4(t) is typically exponential at cally [11]:

short times[Cg(t)~e"“], but is anomalous long-tailed
- 1+« i ~ -~
[Cqy(t)~1/7*] at long times. Cyle)=[e+wyely(e)] 1 (5.19

C. Fokker-Planck continuum model

A relatively simple analysis of the problem can also bewhere

made in some continuum models for which the spgcg

={x} is assumed to be a one-dimensional continuum. WQZZDX{f dxe*Ug(X)f
In our analysis, we will use the simplest model for sto- xe{b} X~Xg

chastic fluctuations in théx} space based on the Fokker-

Planck approximation in whicli= — D,V ,(V,+ V,u). For

a general analysis of the kineti€(t), one does not need to

specify the explicit analytic form ofi(x) =U(x)/(kgT). We

will only assume thati(x)=u(|x|) is the even function of

the shape of a potential well with the bottomat x,=0 ~ b

andu(x)— as|x|—o« [for exampleu(x)~x?]. for Cy(e€) is very similar to that for the PDFP,(€)=[¢
Recall that, for the sake of simplicity, we restrict our- +e/®(e)] L. The only difference is in the additional coef-

selves to the discussion of the cdsg=|t) in which the ficientw,/kq in Eq.(5.19. This means that the kinetic func-

matrix y=xq® is independent oky. For definiteness, we tion Cy(t) is close toP,(t).

also assume that initially the system is prepared in the equi- In particular, in the Mittag-Leffler approximatio@.9) for

-1
dxéd”} (5.16

is the lowest eigenvalue of the operat@y, which deter-
mines the rate of escaping from the wel(x) [21]. In ex-
pression(5.16), the first and second integrals are taken over
the regions near the bottofb} of the well (x~x,=0) and
near the barrier at~xg, respectively. Interestingly, formula

librium state in the{x} space, i.e|i,)=|ey). which y(e) =w(e/w)“ for a<1,
The kineticsCy(t) is essentially determined by the reac-
tivity k(x). In the considered case of non-Markovian fluc- Cy()=E,[ —(wg/w)(wt)*]. (5.17

tuations, which corresponds to the long-tailed PDM(t) o ) _ )

~ 11" (with a<1), the problem becomes fairly complex It is important to note that, according to this expression,
for x-dependent reactivity. Even in the parabolic modelCq(t) @anomalously slowly decreases at long timeg(t)
k(x)~x?, analytically solvable for Markovian fluctuations ~ a . ) )
[20], the kinetics cannot be found in the analytical form in  Itis worth noting that in the presence of anomalous gating
the non-Markovian case. In what follows, we will consider the reaction kinetic€(t) is expected to strongly depend on
the physically reasonable and analytically solvable modelthe functional form ofk(x). This fact will become quite
which is often applied for the description of gatitepe Ref. ~ clear if one takes into account that for sharply chandifg

[19], and references thergin [given by Eq.(5.1D], Cy(t) is a slowly decreasing function:
Cqy(t)~ 1%, while for constank=k, the kineticsCy(t) is
k(x) =koO(|X| —Xg) with kg— 0. (5.1)  exponential:C4(t) ~exp(—kqt). Unfortunately, it is difficult

) ) to analyze the dependence Gf(t) on k(x) within the
At the coordinatestx, at the onset of fast reaction, the Fokker-Plank approximation. From this point of view, the

potentialu(x) is assumed to be large enough(:+xo)>1. strong relaxation model proposed above proves to be very
In accordance with the results of Sec. V, the problem ofhelpful.

calculation of the PDFC(x,x;|t) reduces to obtaining the

Green’s function§n=[ﬂ(x)+,7LQ(X)/§/(Q(X))]‘1, where D. Strong relaxation model

Q)=erkix). Itis gasily seen that for the stepwikex) The general results obtained in Sec. IVB within the

[Eq. (5.11], one getg,=0 for x=X, and strong relaxation model allow us to derive an analytical ex-
X L pression for the reaction kineti&y(t). Here, we will con-
Gn=[e+€eLly(e)]" ! for x=<x,, (5.12 sider the most interesting case of the continufxjnspace

and assume that the relaxation ratgis independent ok.
where In principle, some details of the reaction kinetics at early
stage depend on the initial stdie) in the {x} space, how-
L= Z‘g= =D,V (Vi +V,uy), (5.13 ever, for definiteness and simplicity, we will analyze only the
case of the equilibrium initial staté,)=|e,), in which the
in which the potential Laplace transform of the kinetics is given by
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~ A A B ~ ~ —k(X)ty — 7—1 —[u(x) +k(x)t]

Cy=(ed (WM Gole)=(Bl(1— (W), (519 Where{e )=z 7J .dxe and

where, according to Eq4.19), . toe ] fo ot .

(e ) ~ - dxe ~ 1 (5.25

uJ —©

Wy= (147, ! and Py=[Q(1+1/7y)]"%, (5.19

with 3’92 3’/70- In formula(5.18 [following Eq. (4.18)], we Therefore, within the Mittag-Leffler approximation in which
introduce the notatiogB) for the averages of the operators Pg(t)=Ed[—(7o/W)(wt)“] one obtains
B=Wy,Py: o
A Cy(t) ~ Lot (5.26)
<B>:<ex|B|ex>zzalf de(X)efu(x), (5.20
It is worth noting that the potential(x) does not affect the
in which Z,= [dxe '™ is the partition function. obtained asymptotic behavior Gfy(t). It is only determined
Expressiong5.18—(5.20 reduce the problem of obtain- by the specific features of the dependek¢e) and anoma-
ing the kineticsCy(t) to that of evaluating the integrals in lous fluctuations of reactivity.
(By) and<\7vg>. Formula(5.26 clearly demonstrates the important mani-
festation of the functional form of reactivitg(x) in the re-

1. Some exact limiting results action kinetics. In accordance with the above general conclu-
sions, for slow dependenddx) (for small «,) the kinetic
function Cy(t) sharply decreases at- approaching the
exponential function in the limite, — 0, as predicted above.

(a) Anomalous reaction kinetics for stepwise k[Eq.
(5.12)]. For stepwise dependence of the reactivity xin

k(X) =kof(|X| —xo) with kog—¢, the parametef$§g> and In particular, in the case of anomalous reactivity fluctua-
(W) can easily be evaluated analytically. Substitution oftions(i.e., fora<<1) whose statistics cannot be described by
these parameters into E(.18 yields any characteristic time, the reaction kinetics has nevertheless
a finite average timey if o, <1/(1—-a):
Co=(1—p)letprel vg(e)] ™, (5.2 3
* ~ (Pg)o
where 7 =f dtCy(t)=Cy(e=0)= —2—, (5.2
o=/, (1) =Cy( ) 1~ (Wy)o (5.27
p,=2 wd—xe*”(x) with Z =fw dxe U® (5.22
' xoZu Y ' where
is the population of reactive states in the equilibrium state. _ _ 1 e U
Within the Mittag-Leffler approximation(4.9), in which (Wg>0=<Wg>€:0=Z—f dX1+—(x)’ (5.28
v(e)=w(e/w)® for <1, u Yy
Cy()=(1=p)Eal —pr(yo/W)(WH)*].  (5.23 (Boyom (B) 1 f g —ut) (5.29
= e—0==—| dx - , (5.
YOI 2 TR0+ 75 ()]

For p,<1, this expression agrees with formula.17 ob-
tained above in the Fokker-Planck model with the nate
replaced by the average reaction rpte. with y4(X) = y(k(x))/ yo. It is easily seen that the condition

(b) Exponential reaction kinetics for k(x) independent of o, <1/(1— «) ensures the convergence of the integral in Eq.
x. In the trivial case ok(x) =k, independent ok, we get (5 29) for (Pg)o atx—0.

Py=(e+ ko)‘l(l—Wg) and, therefore Cy(t)=exp(—kqt), The expressions similar to E€6.27) can be written for
as expected. any higher moments of the kineti€,(t) in terms of deriva-
tives off:g(e). The existence conditions for these moments
are easily determined from E¢b.26).

In the casek(x) = ko(|x|/xp) ", the expression foCq(t) In general, the paramete(§Vy), and (Py), and, there-
cannot be obtained analytically, in general. However, somgore, 7, can be calculated only numerically. In some simple
interesting conclusions can be made by analyzing thenodels, the representation in an analytical form is, in prin-
asymptotic(at t—c) behavior of Cy(t), which is deter- ciple, also possible. For example, in the Mittag-Leffler ap-
mined byCg(€) ate—0. Itis easixsly seen that in the lead- proximation and foru(x): u(x)=uyf(|x|—x,), with u,

2. Nonexponential reaction kinetics for &) ~|x|*

ing order in e—0, we can writeCy~(Pg)/(1—(Wy)o),  —, both(Wy), and(Pg), are expressed in terms of the
with <\7Vg>0:<\7vg>6:0, ie. incomplete EuleB functions[22] (closely related to the hy-
pergeometric functions Unfortunately, even in this simpli-

t—oo fied model, a formula forg is fairly cumbersome and incon-

Cylt) ~ (1—(Wy)o) *Py(t)(e K@Y, (5.24  venient for the analysis.
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VI. DISCUSSION AND SUMMARY a universal function o€, independent of the transitions rates

In this work, we proposed the non-Markovian variant of Kd,o- In these cases, the dependencg(@j on the ratescq o
the SLE, which describes the effect of non-Markovian fluc-reduces to that ol = k4— x, only, so that the problems of
tuations of the parameters of dynamical systems on the evenodelingy andZ, which are determined by the processes in
lution of these systems. In the case of Markovian fluctua{q;} and {x,} spaces, respectively, can be analyzed sepa-
tions, the SLE is well known and is successfully applied to arately (see Sec. IV.
lot of problems of the relaxation theory. As for the non-  (3) To illustrate high efficiency of the proposed methods
Markovian case, the corresponding SLE has not been disand models we applied them in the analysis of the effect of
cussed so far, to the best our knowledge. rate fluctuations on the kinetic€y(t) of the first-order
Here, we have analyzed the effect of non-Markovian fluc-chemical reactions. This effect, usually called gating, is
tuations of parameters within the CTRWA. This approachknown to be very important in some biochemical reactions
makes it possible to derive the integral equation for the PDF19]. In our work, we concentrated on the discussion of the
(or density matrix of the system that can be considered as ananifestation of possible anomalous long-tailed fluctuations
generalization of the conventionéWlarkovian SLE to the  sometimes observed in biochemical processes. Some inter-
non-Markovian case. esting results are obtained with the proposed models, in par-
It is shown that the CTRWA-based non-Markovian SLE ticular, within the Mittag-Leffler approximation properly de-
can equivalently be represented in terms of some Markoviagcribing anomalous behavior of waiting time PDW(t)
SLE. This representation provides a deep insight into the- e (a<1).
specific features of non-Markovian processes. It allows for In the simple two-state modéSec. VB, the reaction
the formulation and analysis of some realistic non-kineticsCy(t) is found to be represented as a superposition
Markovian models and approximations useful for discussiordf exponential and long-tailed anomalous terms. Naturally,

of normal and anomalous relaxation phenomena. the exponential term mainly contributes@g(t) at relatively
Below, we summarize the most important results of thisshort times, while the long time asymptotic behavior is de-
analysis. termined by the anomalous term. The situation is especially

(1) The Markovian representation gives the most rigorougnteresting in the limit of large rates of transitions between
method for derivation of the CTRWA-based non-Markovian states(larger than the reaction rate in the reactive gtate
SLE. It also provides a physically clear interpretation of thewhich the characteristic rate of the anomalous part of the
important functions and parameters of the underlyingreaction kinetics is significantly affected by the transition
CTRWA, and enables us to develop convenient ways of théates.
numerical solution of the non-Markovian SLE reducing itto A more realistic analysis, however, should be based on
the Markovian one. This problem will be discussed in detailcontinuum models of transitions in tHe,} space. In our
elsewherd23]. Here, we restrict ourselves to a few remarkswork, we analyzed the predictions of two of them: the
only. First, the Markovian representation allows for the Fokker-Planck model and the sudden relaxation time model.
analysis of the physical meaning of renewals, applied in théne of the most important predictions of both models com-
CTRWA, in terms of revisits of the transition stdt¢ in the  prises in the strong dependence of the reaction kinetics on
{q;} spacesee Eqs(3.18—(3.22]. Second, this representa- the mathematical form d€(x). In our analysis, we assumed
tion shows that the stationary CTRWA exists only if the cor-k(x)~|x|“. The kinetics is found to change from strongly
responding Markovian controlling proce@s the{q;} spaceé  anomalous long-tailed to exponential with the increase,of
is stationary(i.e., has an equilibrium statend the initial from o, <1 to a,>1, i.e., as the dependenkéx) becomes
state|i) is in equilibrium. As for the conventional nonsta- sharper. The specific features of this change of the kinetics
tionary CTRWA, it is realized fofi)=|t). Third, the con- are analyzed within the strong relaxation model. In particu-
trolling Markovian processes in tHej;} space, which do not lar, it is shown that at larger,>1/(1- ), the kinetics is
have the equilibrium states, represent anomalous CTRWAnomalous long tailed and cannot be described by any char-
and anomalous non-Markovian SLE corresponding to thecteristic time. At smallef o, <1/(1—«)], however, it is
long-tailed behavior of the PDW/,(t— o)~ 141", Fourth, characterized by the average reaction tirgelefined by Egs.
the Markovian representation allows, in principle, for the(5.27—(5.29.
extension of the non-Markovian SLE to the case of quantum This work mainly concerns with the analysis of manifes-
controlling processes, such as non-adiabatic charge transftations of anomalous long-tailed fluctuatiofsith a<1).
reactiong 21], etc. However, the obtained general results, in particular, formulas

(2) The proposed Markovian representation is especiallyjor reaction kinetics in the presence of gatif®ec. V), are
useful for the analysis of the multistate modelxy} space. valid for any type of stochastic fluctuations including con-
With the use of this representation, the problem of evaluatingentional Poissonian. For example, for non-Poissonian fluc-

the PDF matrix under stud§(t) is reduced to obtaining the tuations withWy(t—e)~1/'"* anda>1, the reaction ki-

, N neticsCy(t) still depends on the form d&(x), but asa is
Green's f“”Ct'°@9j(7+£) [see Eqs(3.23 and(3.24],  j,creased this dependence becomes less pronounced, disap-
in which the matrixy and operatol are expressed in terms pearing ate>1.
of the parameters of the model. It is important to note thatin  |n conclusion, the proposed non-Markovian SLE and its

some case@mainly considered in this woykthe matrixy is ~ Markovian representation enable one to analyze the effects
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of non-Markovian fluctuations of parameters on the kineticgion along the reaction coordinatgal], stochastic processes
relaxation in dynamical systems. To illustrate the results obbserved by single-molecule spectroscfpy], etc. Analysis
our work, we discussed the effect non-Markovian anomalousf some of these processes is now in progress.

fluctuations of the rate on the kinetics of gating, taking into

account formal mathematical equivalence of this problem to

that for dynamical systems. However, there are a number of ACKNOWLEDGMENTS
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